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Confined Turing patterns in growing systems
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In this paper we address the problem of pattern formation in confined Turing systems in two dimensions,
when one assumes the enhancement of the concentration of one of the chemicals at some of the confining
surfaces. This model is suitable to study biological systems, such as the skin patterns shown by some marine
fish. We also study numerically the dynamical growth of the system by changing the size of the confined
region while dynamical diffusion and reaction phenomena take place. This idea is tested in two different
models. This allows one to estimate the robustness of stripe formation.@S1063-651X~97!06807-4#

PACS number~s!: 47.54.1r, 82.40.Bj, 82.20.Mj
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In 1952, Turing established the basis to explain biologi
patterns using two interacting chemicals@1#. The experimen-
tal observation of a ‘‘Turing pattern’’ occurred in a chemic
system nearly 40 years after their prediction by Turing@2,3#,
but it was not until very recently that the example of a Tu
ing pattern in a biological system was confirmed in sk
patterns of the angelfish~Pomacanthus! by Kondo and Asai
@4#. In this work the authors propose and solve a system
two reaction-diffusion equations in a growing on
dimensional domain to explain the insertion of new strip
between the older ones during the growth ofPomacanthus
semicirculatusand the rearrangement of the stripe pattern
Pomacanthus imperator.

Kondo and Asai’s interpretation was subject to criticis
by Höfer and Maini@5#, who did not find enough evidence t
say that reaction-diffusion systems could provide a mec
nistic basis for the strip-doubling phenomenon. In particu
they claim that a two-dimensional simulation would be
more realistic representation of the fish skin than a o
dimensional domain. Ho¨fer and Maini argue that a mecha
nism that sets the distance between adjacent stripes and
kind of ‘‘memory’’ that conserves the location of old stripe
is needed in order to explain the patterning dynamics of
Pomacanthus. Accordingly, in this work we shall show that
reaction-diffusion system is capable of describing the m
features of the phenomena observed in thePomacanthus
skin. For that goal, we consider two sets of Turing equati
known to form different kinds of patterns; these are solved
a two-dimensional spatial domain that simulates the
shape, with zero flux boundary conditions. The key feat
of our simulation is the enforcement of an enhanced sou
of the activator along some of the boundaries of the dom
This idea has close parallels with the mechanism of st
formation in theDrosophilaembryo where the pattern of th
anteroposterior~head-tail! segmentation is caused by a hig
concentration of theBicoid protein along the anterior~head!
side @6#.

To see how the boundary conditions and domain sh
affect the stationary patterns from an initially homogeneo
state, we study a simplified version of a model for glycoli
as the specific reaction mechanism, which has been ex
sively studied numerically by Dillonet al. @7# in one dimen-
sion. The Turing system of equations is
561063-651X/97/56~1!/1250~4!/$10.00
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This represents a cross activator-inhibitor system with a u
form stationary-state solution atuu5b(k1b2)21 and
vu5b. A linear stability analysis of the solutions around th
fixed point shows that the uniform stationary solution may
unstable to periodic fluctuations for smalld,dc , wheredc
is some critical value that depends on the constantsk and
b. Following Dillon et al., we set the parametersk51.0 and
b50.001 and for these valuesdc50.172. Therefore, we
choosed50.10.

We choose different domain shapes bounded by cur
C1, C2, C3, andC4 on a plane where the diffusion of th
reactants is set equal to zero. At some of these boundarie
assume that the source termk for reactantu is enhanced by
1%.

The numerical solution of the coupled partial different
equations is accomplished by discretizing the Laplaci
which we write on a square lattice with lattice parameteb
and with sites denoted by (i , j ). The stationary solutions
were obtained numerically in a square lattice of 2500 poi
by a simple Euler method. When the initial state is the u
form solutionu5uu andv5vu , the system remains stable i
this state. However, when in some of the boundaries
source termk is enhanced, a pattern of stripes is obtain
whose formation does not need an initial perturbation.

The spatial oscillations grow from the enhanced surface
20 000 iterations with a time step of 0.002. The solutio
converge to a stationary state within an error of;1025. The
number of stripes in the pattern depends on the param
D/b2, which in our case was set to 4. This might seem triv
since Dirichlet boundary conditions should favor stripes p
allel to the boundary. However, the stripes are not form
well if the enhancement field is set equal in all four boun
aries. In this case a lattice of spots appears. This is impor
because it shows that the formation of stripes is very se
tive to the size of the system in units of the wavelength,
1250 © 1997 The American Physical Society
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56 1251BRIEF REPORTS
shape of the boundaries, and possibly the point in ph
space where one starts the calculation or the initial con
tions.

In order to separate the influence of the latter facto
namely, the presence of a fixed source in the boundary,
the initial conditions we performed the calculations shown
Fig. 1, where different enhancement conditions are con
ered, starting with a randomized initial state with variatio
of 10%. As observed, the absence of a field in the bound
produces mainly a pattern of spots. Imperfect stripes
formed when there is an enhancement in one, two, or fou
the boundaries. However, the spotted pattern is never
feated.

This means that in this model a pattern of stripes is
tained only if there is a source field and the system st
very near the uniform state. However, the model of Eq.~1! is
perfectly able to produce patterns morphologically very sim
lar to the ones observed in the marine angelfishPomacan-
thus. One starts with uniform initial conditions and mimic
the shape of the fish with parabolas. At some boundaries
assumes that there are suitable sources. In Fig. 2~a! a calcu-
lation with uniform initial conditions and with a field in th
lower and upper boundaries is shown. Observe the conse
tion on the ‘‘wavelength’’ that forces the appearance of n
stripes in the wider zones, as observed in the ange
Pomacanthus imperator.

If the source is imposed on the vertical straight boun
aries, a vertical pattern of slightlybentstripes is obtained, a
shown in Fig. 2~b!. This could mimic the pattern observed
the speciesPomacanthus semicirculatus. The model could
also reproduce the pattern observed in other fish, such a
zebra fish, that presents horizontal stripes without car
about its shape. This could be done by setting the enha
ment field in the lower straight boundary, as shown in F
2~c!. However, the present model seems to be more ap
priate to obtain combined patterns of patches and stripe
the one found in theDanio malabaricus.

FIG. 1. Patterns obtained in a square lattice starting with a
domized state obtained with random deviations of 10% from
uniform state:~a! without an enhancement of the source parame
k in the boundaries and with an enhancement of 10% in~b! only
the lower boundary,~c! the upper and lower boundaries, and~d! all
four boundaries. Observe the formation of an imperfect lattice
dots near the center.
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These calculations demonstrate that a Turing system
able to mimic the stripe patterns found in the angelfish,
stated by Kondo and Asai@4#. However, we have detected
natural tendency of model Eq.~1! to form patterns of spots
when one departs from the uniform fixed point. Furthermo
the marine angel fish has stripe patterns that evolve as
fish grows, a central issue addressed by the time calcula
of Ref. @4#. We shall address this now.

The patterns obtained so far are static and could be c
sidered as valid only if the two characteristic times of t
dynamical process of growth, namely, the diffusion time a
the fish growing time, are extremely different. In order
study this issue we have performed calculations of Eq.~1! in
a continuously growing lattice, assuming that the bound
grows as the reactants diffuse. This was done by chang
the parameterD/b2 by a small amount in each iteration, th
is, we set a slow uniform dilation of the lattice so th
b5at, where the constanta is fixed so thatb doubles its
size in 40 000 iterations.

n-
e
r

f

FIG. 2. Calculation starting with the uniform state and modeli
the shape of the fish with fields on the~a! horizontal and~b! vertical
boundaries. Observe the deformations and bendings of the st
due to the form of the boundaries.~c! Pattern obtained when only
the lower straight boundary contains a field. Observe that the in
ence of the curved boundaries is now negligible.

FIG. 3. Calculation modeling the growth of the fishPomacan-
thus imperatorwith Eq. ~1!. The lattice represents systems of larg
size because the parameterD/b2,which gives the distance scale,
made smaller as time runs. The series~a!–~d! are equally spaced
snaps of the growing process.
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1252 56BRIEF REPORTS
A series of patterns simulating the growth ofPomacan-
thus imperatoris shown in Fig. 3. The size of the fish in 3~d!
is a factor of 1.6 larger than in 3~a! and there are 5000
iterations between the figures. Observe that as the fish gr
the stripe pattern evolves to a patchy pattern, not observe
grown-up fish. The problem is even worse in the simulat
of the growth ofPomacanthus semicirculatus, shown in Fig.
4, where a spotty pattern is definitely established in big fi

This competition between spots and stripes in Turing p
terns has been addressed many times@7,8# and various mod-
els for biological @9# and chemical@10# pattern formation
have been put forth. It is difficult to select a particular one
the model that is more appropriate for a given case. O
intention is to study the effect of our particular bounda
conditions and shape on a different model. We choose
activator-substrate system thoroughly studied in the p
@11#, which is able to produce spots, periodic, and strip
labyrinth patterns according to the values of the parame
used. The equations read

]u

]t
5bu2ru

v2u
11fv2

1D¹2u,

FIG. 4. Calculation modeling the growth of the fishPomacan-
thus semicirculatuswith Eq. ~1!. The series~a!-~d! was obtained as
in Fig. 3.

FIG. 5. Calculation modeling the growth of the fishPomacan-
thus imperatorwith Eq. ~2!. The series~a!–~d! was obtained as with
the former model.
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where the notation of Eq.~1! in Ref. @11# has been change
in order to compare with our Eq.~1!, taken from Ref.@7#.
Using our numerical methods, we have reproduced the la
rinth pattern shown in Fig. 2~c! of Ref. @11# using the param-
eters given there when one imposes periodic boundary c
ditions and a random initial state. The parameters in
calculations using this model ared50.025, ru50.02,
rv50.01,kv50.01,bu50.02,bv50.0, andf50.1.

Growing patterns were obtained with this model and th
are shown in Fig. 5 for thePomacanthus imperatorand in
Fig. 6 for the Pomacanthus semicirculatus. The way of
growing was exactly as in Figs. 3 and 4. Observe that
stripes are more stable, although the tendency to form s
is also present.

This tendency could be avoided if the enhancement fie
are set only in the upper curved boundary. The series
growing patterns shown in Fig. 7 resemble very much
actual pattern on the real fish.

Summarizing, we have performed a set of numerical c
culations using the Turing system in Ref.@7# in a two-

FIG. 6. Calculation modeling the growth of the fishPomacan-
thus semicirculatuswith Eq. ~2!.

FIG. 7. Calculation modeling the growth of the fishPomacan-
thus imperatorwith Eq. ~2!, with a source field only at the uppe
curved boundary.



n
he
en
se
an

y
e
o
.

o
to
a
d
th
g
he
ni
ou

the
lu-
the

ing
and
can
sms
har-
u-
not
ate
in
ly
wide

i-
A

56 1253BRIEF REPORTS
dimensional finite lattice. We have introduced two importa
concepts.~i! The influence of the boundary conditions on t
pattern is readily put forth by assuming that there is an
hanced source at some of the boundaries. This idea is
sible in biological systems because of their small size
compatible with recent findings@6# that show the possible
existence of such sources in well-defined parts of the bod
an animal.~ii ! The role of the initial conditions in the shap
of the stable pattern is of paramount importance when c
sidering a system that changes shape and size with time

Our calculations were centered in modeling the shape
the angelfish, recently studied by Kondo and Asai@4#, who
made the important point that in this fish the conservation
wavelength in the pattern while the fish grows is an indica
that a Turing system might be appropriate to model the p
tern, particularly the merging of new stripes. We also mo
eled the dynamic growth of the fish in the case when
ratio between the two time scales of the system is not ne
gible. This is very interesting because it really can tell if t
evolution of stripes is influenced by departing from the u
form state used in the static calculations since it is obvi
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that a stable pattern at a given time does not start from
uniform state. This could allow one to draw some conc
sions not only about the diffusion rates, but also about
locality of the system.

We are conscious that our calculations are far from be
exhaustive, but the results exposed here look promising
encouraging. We are aware that very limited conclusions
be drawn concerning the actual processes in living organi
such as fish. For instance, the truly three-dimensional c
acter of the fish skin, which could probably affect the diff
sion of chemicals, was not addressed here. Also, it is
clear that our method of growing is the most appropri
since one lacks information about how the newborn cells
the skin acquire their coloring. However, we are implicit
assuming that the features studied here are general to a
variety of models.
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