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Confined Turing patterns in growing systems
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In this paper we address the problem of pattern formation in confined Turing systems in two dimensions,
when one assumes the enhancement of the concentration of one of the chemicals at some of the confining
surfaces. This model is suitable to study biological systems, such as the skin patterns shown by some marine
fish. We also study numerically the dynamical growth of the system by changing the size of the confined
region while dynamical diffusion and reaction phenomena take place. This idea is tested in two different
models. This allows one to estimate the robustness of stripe formg8&063-651X97)06807-4

PACS numbe(s): 47.54+r, 82.40.Bj, 82.20.Mj

In 1952, Turing established the basis to explain biological au
patterns using two interacting chemicflg. The experimen- il uv?+DV?u,
tal observation of a “Turing pattern” occurred in a chemical
system nearly 40 years after their prediction by Tufig],
but it was not until very recently that the example of a Tur-
ing pattern in a biological system was confirmed in skin
patterns of the angelfistiPomacanthusby Kondo and Asai
[4]. In this work the authors propose and solve a system of
two reaction-diffusion equations in a growing one-_ . . N . .
dimensional domain to explain the insertion of new stripesThIS represents a cross activator-inhibitor systgm_lthh auni-
between the older ones during the growthRdmacanthus form stationary-state solution ati,= g8{(x+ 5°) and

semicirculatusand the rearrangement of the stripe pattern of2 U~ B-A linear stability analy5|s of thg solutions a_round this
: fixed point shows that the uniform stationary solution may be
Pomacanthus imperator

o . . ... . unstable to periodic fluctuations for sma@i 6., where§
Kondo and Asai’s interpretation was subject to criticism P ¢ ¢

. o . , ) is some critical value that depends on the constantnd
by Hofer and Maini[5], who did not find enough evidence to B. Following Dillon et al,, we set the parameteks= 1.0 and

say that reaction-diffusion systems could provide a mecha; —0.001 and for these values,=0.172. Therefore, we
nistic basis for the strip-doubling phenomenon. In particular, o oces— 010, B '

they claim that a two-dimensional simulation would be & \ye choose different domain shapes bounded by curves
more rgallstlc represgntatlon of thg fish skin than a onec, C,, Cs, andC, on a plane where the diffusion of the
dimensional domain. Her and Maini argue that a mecha- ygactants is set equal to zero. At some of these boundaries we
nism that sets the distance between adjacent stripes and soR@ume that the source tewrfor reactantu is enhanced by
kind of “memory” that conserves the location of old stripes 104,
is needed in order to explain the patterning dynamics of the The numerical solution of the coupled partial differential
PomacanthusAccordingly, in this work we shall show that a equations is accomplished by discretizing the Laplacian,
reaction-diffusion system is capable of describing the mairwhich we write on a square lattice with lattice paramédder
features of the phenomena observed in Bemacanthus and with sites denoted byi,(). The stationary solutions
skin. For that goal, we consider two sets of Turing equationsvere obtained numerically in a square lattice of 2500 points
known to form different kinds of patterns; these are solved irby a simple Euler method. When the initial state is the uni-
a two-dimensional spatial domain that simulates the fisform solutionu=u, andv=v,, the system remains stable in
shape, with zero flux boundary conditions. The key featurdghis state. However, when in some of the boundaries the
of our simulation is the enforcement of an enhanced sourceource termx is enhanced, a pattern of stripes is obtained
of the activator along some of the boundaries of the domainwhose formation does not need an initial perturbation.
This idea has close parallels with the mechanism of stripe The spatial oscillations grow from the enhanced surface in
formation in theDrosophilaembryo where the pattern of the 20 000 iterations with a time step of 0.002. The solutions
anteroposteriothead-tail segmentation is caused by a high converge to a stationary state within an error-cf0~°. The
concentration of th@icoid protein along the anterighead number of stripes in the pattern depends on the parameter
side[6]. D/b?, which in our case was set to 4. This might seem trivial
To see how the boundary conditions and domain shapsince Dirichlet boundary conditions should favor stripes par-
affect the stationary patterns from an initially homogeneousllel to the boundary. However, the stripes are not formed
state, we study a simplified version of a model for glycolisiswell if the enhancement field is set equal in all four bound-
as the specific reaction mechanism, which has been extearies. In this case a lattice of spots appears. This is important
sively studied numerically by Dilloet al.[7] in one dimen- because it shows that the formation of stripes is very sensi-
sion. The Turing system of equations is tive to the size of the system in units of the wavelength, the

Jv

E=KU+UU2—U+D5VZU. (1)
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FIG. 2. Calculation starting with the uniform state and modeling
the shape of the fish with fields on tf® horizontal andb) vertical

FIG. 1. Patterns obtained in a square lattice starting with a ranboundaries. Observe the deformations and bendings of the stripes
domized state obtained with random deviations of 10% from thedue to the form of the boundarieg) Pattern obtained when only
uniform state:(a) without an enhancement of the source parametethe lower straight boundary contains a field. Observe that the influ-
« in the boundaries and with an enhancement of 10%bjronly ~ ence of the curved boundaries is now negligible.
the lower boundary(c) the upper and lower boundaries, aiii all
four boundaries. Observe the formation of an imperfect lattice of These calculations demonstrate that a Turing system is
dots near the center. able to mimic the stripe patterns found in the angelfish, as
stated by Kondo and As@i]. However, we have detected a

shape of the boundaries, and possibly the point in phasBatural tendency of model EL) to form patterns of spots
space where one starts the calculation or the initial condivhen one departs from the uniform fixed point. Furthermore,
tions. the marine angel fish has stripe patterns that evolve as the

In order to separate the influence of the latter factorsfish grows, a central issue addressed by the time calculation

namely, the presence of a fixed source in the boundary, arf Ref.[4]. We shall address this now.
the initial conditions we performed the calculations shown in  The patterns obtained so far are static and could be con-
Fig. 1, where different enhancement conditions are consigéidered as valid only if the two characteristic times of the
ered, starting with a randomized initial state with variationsdynamical process of growth, namely, the diffusion time and
of 10%. As observed, the absence of a field in the boundar{'® fish growing time, are extremely different. In order to
produces mainly a pattern of spots. Imperfect stripes ar&tudy this issue we have performed calculations of (Egin
formed when there is an enhancement in one, two, or four oft continuously growing lattice, assuming that the boundary
the boundaries. However, the spotted pattern is never d&fows as the reactants diffuse. This was done by changing
feated. the parameteb/b? by a small amount in each iteration, that

This means that in this model a pattern of stripes is obls, we set a slow uniform .dile_ltion of the lattice so_that
tained only if there is a source field and the system start®= at, where the constant is fixed so thatb doubles its
very near the uniform state. However, the model of @gis ~ Size in 40 000 iterations.
perfectly able to produce patterns morphologically very simi-
lar to the ones observed in the marine angelffgimacan-
thus One starts with uniform initial conditions and mimics
the shape of the fish with parabolas. At some boundaries one
assumes that there are suitable sources. In Fay.a2calcu-
lation with uniform initial conditions and with a field in the
lower and upper boundaries is shown. Observe the conserva-
tion on the “wavelength” that forces the appearance of new
stripes in the wider zones, as observed in the angelfish
Pomacanthus imperator

If the source is imposed on the vertical straight bound-
aries, a vertical pattern of slightlyentstripes is obtained, as
shown in Fig. 2Zb). This could mimic the pattern observed in
the speciePomacanthus semicirculatu$he model could '
also reproduce the pattern observed in other fish, such as the [ B EE SRR .
zebra fish, that presents horizontal stripes without caring
about its shape. This could be done by setting the enhance- g|G. 3. Calculation modeling the growth of the fiftomacan-
ment field in the lower straight boundary, as shown in Fig.thus imperatomith Eq. (1). The lattice represents systems of larger
2(c). However, the present model seems to be more apprasize because the parameRtb?,which gives the distance scale, is
priate to obtain combined patterns of patches and stripes, asade smaller as time runs. The serias—(d) are equally spaced
the one found in th&anio malabaricus snaps of the growing process.
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FIG. 4. Calculation modeling the growth of the fiBlomacan- FIG. 6. Calculation modeling the growth of the fislomacan-
thus semicirculatusvith Eq. (1). The seriega)-(d) was obtained as  thus semicirculatusvith Eq. (2).
in Fig. 3.
) . . Jdv viu 2
A series of patterns simulating the growth Bébmacan- 3 =B, K,V +pv1+—¢vz +Dé6Vey, 2

thus imperatoiis shown in Fig. 3. The size of the fish ifid}

is a factor of 1.6 larger than in(@ and there are 5000 \here the notation of Eq1) in Ref.[11] has been changed
iterations between the figures. Observe that as the fish growg, order to compare with our Eq1), taken from Ref[7].
the stripe pattern evolves to a patchy pattern, not observed igsing our numerical methods, we have reproduced the laby-
grown-up fish. The problem is even worse in the simulationyinth pattern shown in Fig.(2) of Ref.[11] using the param-
of the growth ofPomacanthus semicirculatushown in Fig.  eters given there when one imposes periodic boundary con-
4, where a spotty pattern is definitely established in big fishgitions and a random initial state. The parameters in our
This competition between spots and stripes in Turing patgg|cylations using this model aré=0.025, p,=0.02,
terns has been addressed many tifi7e8] and various mod- p,=0.01,x,=0.01,3,=0.02, 3,=0.0, and¢=0.1.
els for biological[9] and chemical[10] pattern formation " Growing patterns were obtained with this model and they
have been put forth. Itis difficult to select a particular one asyre shown in Fig. 5 for th®omacanthus imperatoand in
the model that is more appropriate for a given case. OUFEjg. 6 for the Pomacanthus semicirculatuShe way of
intention is to study the effect of our particular boundary growing was exactly as in Figs. 3 and 4. Observe that the
conditions and shape on a different model. We choose agripes are more stable, although the tendency to form spots
activator-substrate system thoroughly studied in the pasg g|so present.
[11], which is able to produce spots, periodic, and striped Thjs tendency could be avoided if the enhancement fields
labyrinth patterns according to the values of the parameterge set only in the upper curved boundary. The series of
used. The equations read growing patterns shown in Fig. 7 resemble very much the
actual pattern on the real fish.
Summarizing, we have performed a set of numerical cal-
culations using the Turing system in Rdff] in a two-

au v2u L DV2
ot~ Pum P g2 PRV

FIG. 5. Calculation modeling the growth of the fisftomacan- FIG. 7. Calculation modeling the growth of the fiBtomacan-
thus imperatowith Eq. (2). The seriesa)—(d) was obtained as with  thus imperatorwith Eq. (2), with a source field only at the upper
the former model. curved boundary.
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dimensional finite lattice. We have introduced two importantthat a stable pattern at a given time does not start from the
concepts(i) The influence of the boundary conditions on the uniform state. This could allow one to draw some conclu-

pattern is readily put forth by assuming that there is an ensions not only about the diffusion rates, but also about the
hanced source at some of the boundaries. This idea is secality of the system.

sible in biological systems because of their small size and e are conscious that our calculations are far from being
compatible with recent findingE5] that show the possible exhaustive, but the results exposed here look promising and
existence of such sources in well-defined parts of the body afncouraging. We are aware that very limited conclusions can
an animal.(ii) The role of the initial conditions in the shape pe grawn concerning the actual processes in living organisms
of the stable pattern is of paramount importance when cong,ch, 55 fish. For instance, the truly three-dimensional char-
sidering a system that changes shape and size with time. Ozcter of the fish skin, which could probably affect the diffu-

theo:r: %?;;‘ﬁatr'gggn\;\l'ersetuﬁgge%edIg;r:ggdaerll'ggpgg ivhha(l)pe ion of chemicals, was not addressed here. Also, it is not
made t%le iméortant p)cl)int that in ¥his fish the conselrvation O]g:!ear that our method qf growing is the most appropriate
wavelength in the pattern while the fish grows is an indicator, _c, o€ Iacks |nf0rmat|on' about how the newborn C?”.S n
that a Turing system might be appropriate to model the patthe skm acquire their coloring. 'However, we are |mpI|C|tIy'

. : . assuming that the features studied here are general to a wide
tern, particularly the merging of new stripes. We also mod-

eled the dynamic growth of the fish in the case when thevarlety of models.

ratio between the two time scales of the system is not negli- We want to thank P.K. Maini for pointing out this fasci-
gible. This is very interesting because it really can tell if thenating problem to us. Financial support from DGAPA
evolution of stripes is influenced by departing from the uni-UNAM (Grants Nos. IN104296 and IN10729&nd CONA-
form state used in the static calculations since it is obviou€yT (Grants Nos. 2677-PE and 0088J)HE appreciated.
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